Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(17)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36080876

RESUMO

Ultrasound (US) image guidance is widely used for minimally invasive procedures, but the invasive medical devices (such as metallic needles), especially their tips, can be poorly visualised in US images, leading to significant complications. Photoacoustic (PA) imaging is promising for visualising invasive devices and peripheral tissue targets. Light-emitting diodes (LEDs) acting as PA excitation sources facilitate the clinical translation of PA imaging, but the image quality is degraded due to the low pulse energy leading to insufficient contrast with needles at deep locations. In this paper, photoacoustic visualisation of clinical needles was enhanced by elastomeric nanocomposite coatings with superficial and interstitial illumination. Candle soot nanoparticle-polydimethylsiloxane (CSNP-PDMS) composites with high optical absorption and large thermal expansion coefficients were applied onto the needle exterior and the end-face of an optical fibre placed in the needle lumen. The excitation light was delivered at the surface by LED arrays and through the embedded optical fibre by a pulsed diode laser to improve the visibility of the needle tip. The performance was validated using an ex-vivo tissue model. An LED-based PA/US imaging system was used for imaging the needle out-of-plane and in-plane insertions over approach angles of 20 deg to 55 deg. The CSNP-PDMS composite conferred substantial visual enhancements on both the needle shaft and the tip, with an average of 1.7- and 1.6-fold improvements in signal-to-noise ratios (SNRs), respectively. With the extended light field involving extracorporeal and interstitial illumination and the highly absorbing coatings, enhanced visualisation of the needle shaft and needle tip was achieved with PA imaging, which could be helpful in current US-guided minimally invasive surgeries.


Assuntos
Nanocompostos , Agulhas , Iluminação , Análise Espectral , Ultrassonografia
2.
Photoacoustics ; 26: 100351, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35495095

RESUMO

Photoacoustic imaging has shown great potential for guiding minimally invasive procedures by accurate identification of critical tissue targets and invasive medical devices (such as metallic needles). The use of light emitting diodes (LEDs) as the excitation light sources accelerates its clinical translation owing to its high affordability and portability. However, needle visibility in LED-based photoacoustic imaging is compromised primarily due to its low optical fluence. In this work, we propose a deep learning framework based on U-Net to improve the visibility of clinical metallic needles with a LED-based photoacoustic and ultrasound imaging system. To address the complexity of capturing ground truth for real data and the poor realism of purely simulated data, this framework included the generation of semi-synthetic training datasets combining both simulated data to represent features from the needles and in vivo measurements for tissue background. Evaluation of the trained neural network was performed with needle insertions into blood-vessel-mimicking phantoms, pork joint tissue ex vivo and measurements on human volunteers. This deep learning-based framework substantially improved the needle visibility in photoacoustic imaging in vivo compared to conventional reconstruction by suppressing background noise and image artefacts, achieving 5.8 and 4.5 times improvements in terms of signal-to-noise ratio and the modified Hausdorff distance, respectively. Thus, the proposed framework could be helpful for reducing complications during percutaneous needle insertions by accurate identification of clinical needles in photoacoustic imaging.

3.
Ultrasound Med Biol ; 48(3): 520-529, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34974926

RESUMO

Accurate identification of the needle tip is a key challenge with ultrasound-guided percutaneous interventions in regional anaesthesia, foetal surgery and cardiovascular medicine. In this study, we developed an ultrasonic needle tracking system in which the measured needle tip location was used to set the electronic focus of the external ultrasound imaging probe. In this system, needle tip tracking was enabled with a fibre-optic ultrasound sensor that was integrated into a needle stylet, and the A-lines recorded by the sensor were processed to generate tracking images of the needle tip. The needle tip position was estimated from the tracking images. The dependency of the tracking image on the electronic focal depth of the external ultrasound imaging probe was studied in a water bath and with needle insertions into a clinical training phantom. The variability in the estimated tracked position of the needle tip, with the needle tip at fixed depths in the imaging plane across a depth range from 0.5 to 7.5 cm, was studied. When the electronic focus was fixed, the variability of tracked position was found to increase with distance from that focus. The variability with the fixed focus was found to depend on the the relative distance between the needle tip and focal depth. It was found that with dynamic focusing, the maximum variability of tracked position was below 0.31 mm, as compared with 3.97 mm for a fixed focus.


Assuntos
Agulhas , Ultrassom , Eletrônica , Imagens de Fantasmas , Ultrassonografia , Ultrassonografia de Intervenção/métodos
4.
J Vis Exp ; (138)2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30199033

RESUMO

Ultrasound is frequently used for guiding minimally invasive procedures, but visualizing medical devices is often challenging with this imaging modality. When visualization is lost, the medical device can cause trauma to critical tissue structures. Here, a method to track the needle tip during ultrasound image-guided procedures is presented. This method involves the use of a fiber-optic ultrasound receiver that is affixed within the cannula of a medical needle to communicate ultrasonically with the external ultrasound probe. This custom probe comprises a central transducer element array and side element arrays. In addition to conventional two-dimensional (2D) B-mode ultrasound imaging provided by the central array, three-dimensional (3D) needle tip tracking is provided by the side arrays. For B-mode ultrasound imaging, a standard transmit-receive sequence with electronic beamforming is performed. For ultrasonic tracking, Golay-coded ultrasound transmissions from the 4 side arrays are received by the hydrophone sensor, and subsequently the received signals are decoded to identify the needle tip's spatial location with respect to the ultrasound imaging probe. As a preliminary validation of this method, insertions of the needle/hydrophone pair were performed in clinically realistic contexts. This novel ultrasound imaging/tracking method is compatible with current clinical workflow, and it provides reliable device tracking during in-plane and out-of-plane needle insertions.


Assuntos
Imageamento Tridimensional/instrumentação , Agulhas , Fibras Ópticas , Ultrassonografia/instrumentação , Humanos , Transdutores
5.
Biomed Opt Express ; 9(3): 1151-1163, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29541509

RESUMO

Tissue-mimicking phantoms are widely used for the calibration, evaluation and standardisation of medical imaging systems, and for clinical training. For photoacoustic imaging, tissue-mimicking materials (TMMs) that have tuneable optical and acoustic properties, high stability, and mechanical robustness are highly desired. In this study, gel wax is introduced as a TMM that satisfies these criteria for developing photoacoustic imaging phantoms. The reduced scattering and optical absorption coefficients were independently tuned with the addition of TiO2 and oil-based inks. The frequency-dependent acoustic attenuation obeyed a power law; for native gel wax, it varied from 0.71 dB/cm at 3 MHz to 9.93 dB/cm at 12 MHz. The chosen oil-based inks, which have different optical absorption spectra in the range of 400 to 900 nm, were found to have good photostability under pulsed illumination with photoacoustic excitation light. Optically heterogeneous phantoms that comprised of inclusions with different concentrations of carbon black and coloured inks were fabricated, and multispectral photoacoustic imaging was performed with an optical parametric oscillator and a planar Fabry-Pérot sensor. We conclude that gel wax is well suited as a TMM for multispectral photoacoustic imaging.

6.
Phys Med Biol ; 63(1): 015033, 2018 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-29186007

RESUMO

Here we describe methods for creating tissue-mimicking ultrasound phantoms based on patient anatomy using a soft material called gel wax. To recreate acoustically realistic tissue properties, two additives to gel wax were considered: paraffin wax to increase acoustic attenuation, and solid glass spheres to increase backscattering. The frequency dependence of ultrasound attenuation was well described with a power law over the measured range of 3-10 MHz. With the addition of paraffin wax in concentrations of 0 to 8 w/w%, attenuation varied from 0.72 to 2.91 dB cm-1 at 3 MHz and from 6.84 to 26.63 dB cm-1 at 10 MHz. With solid glass sphere concentrations in the range of 0.025-0.9 w/w%, acoustic backscattering consistent with a wide range of ultrasonic appearances was achieved. Native gel wax maintained its integrity during compressive deformations up to 60%; its Young's modulus was 17.4 ± 1.4 kPa. The gel wax with additives was shaped by melting and pouring it into 3D printed moulds. Three different phantoms were constructed: a nerve and vessel phantom for peripheral nerve blocks, a heart atrium phantom, and a placental phantom for minimally-invasive fetal interventions. In the first, nerves and vessels were represented as hyperechoic and hypoechoic tubular structures, respectively, in a homogeneous background. The second phantom comprised atria derived from an MRI scan of a patient with an intervening septum and adjoining vena cavae. The third comprised the chorionic surface of a placenta with superficial fetal vessels derived from an image of a post-partum human placenta. Gel wax is a material with widely tuneable ultrasound properties and mechanical characteristics that are well suited for creating patient-specific ultrasound phantoms in several clinical disciplines.


Assuntos
Átrios do Coração/diagnóstico por imagem , Nervos Periféricos/diagnóstico por imagem , Imagens de Fantasmas , Placenta/diagnóstico por imagem , Impressão Tridimensional/instrumentação , Ultrassonografia/instrumentação , Ultrassonografia/métodos , Acústica , Biomimética , Módulo de Elasticidade , Feminino , Humanos , Modelos Anatômicos , Gravidez
7.
Med Image Comput Comput Assist Interv ; 10434: 637-645, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28948240

RESUMO

Ultrasound imaging is widely used for guiding minimally invasive procedures, including fetal surgery. Visualisation of medical devices such as medical needles is critically important and it remains challenging in many clinical contexts. During in-plane insertions, a needle can have poor visibility at steep insertion angles and at large insertion depths. During out-of-plane insertions, the needle tip can have a similar ultrasonic appearance to the needle shaft when it intersects with the ultrasound imaging plane. When the needle tip is not accurately identified, it can damage critical structures, with potentially severe consequences, including loss of pregnancy. In this paper, we present a tracking system to directly visualise the needle tip with an ultrasonic beacon. The waves transmitted by the beacon were received by an external ultrasound imaging probe. Pairs of co-registered images were acquired in rapid succession with this probe: a photoacoustic image obtained with the system in receive-only mode, and a conventional B-mode ultrasound image. The beacon comprised a custom elastomeric nanocomposite coating at the distal end of an optical fibre, which was positioned within the lumen of a commercial 22 gauge needle. Delivery of pulsed light to the coating resulted in the photoacoustic generation of ultrasonic waves. The measured tracking accuracies in water in the axial and lateral dimensions were 0.39±0.19 mm and 1.85±0.29 mm, respectively. To obtain a preliminary indication of the clinical potential of this ultrasonic needle tracking system, needle insertions were performed in an in vivo fetal sheep model. The results demonstrate that ultrasonic needle tracking with a fibre-optic transmitter is feasible in a clinically realistic fetal surgery environment, and that it could be useful to guide minimally invasive procedures by providing accurate visualisation of the medical device tip.


Assuntos
Feto/cirurgia , Agulhas , Ultrassonografia de Intervenção/métodos , Algoritmos , Animais , Feminino , Feto/diagnóstico por imagem , Gravidez , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Ovinos
8.
Sci Rep ; 7(1): 3674, 2017 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-28623369

RESUMO

Ultrasound is well suited for guiding many minimally invasive procedures, but its use is often precluded by the poor visibility of medical devices. When devices are not visible, they can damage critical structures, with life-threatening complications. Here, we developed the first ultrasound probe that comprises both focused and unfocused transducer elements to provide both 2D B-mode ultrasound imaging and 3D ultrasonic needle tracking. A fibre-optic hydrophone was integrated into a needle to receive Golay-coded transmissions from the probe and these data were processed to obtain tracking images of the needle tip. The measured tracking accuracy in water was better than 0.4 mm in all dimensions. To demonstrate the clinical potential of this system, insertions were performed into the spine and the uterine cavity, in swine and pregnant ovine models in vivo. In both models, the SNR ranged from 13 to 38 at depths of 22 to 38 mm, at out-of-plane distances of 1 to 15 mm, and at insertion angles of 33 to 42 degrees relative to the probe surface normal. This novel ultrasound imaging/tracking probe has strong potential to improve procedural outcomes by providing 3D needle tip locations that are co-registered to ultrasound images, while maintaining compatibility with current clinical workflow.

9.
Med Phys ; 43(7): 4065, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27370125

RESUMO

PURPOSE: Accurate and efficient guidance of medical devices to procedural targets lies at the heart of interventional procedures. Ultrasound imaging is commonly used for device guidance, but determining the location of the device tip can be challenging. Various methods have been proposed to track medical devices during ultrasound-guided procedures, but widespread clinical adoption has remained elusive. With ultrasonic tracking, the location of a medical device is determined by ultrasonic communication between the ultrasound imaging probe and a transducer integrated into the medical device. The signal-to-noise ratio (SNR) of the transducer data is an important determinant of the depth in tissue at which tracking can be performed. In this paper, the authors present a new generation of ultrasonic tracking in which coded excitation is used to improve the SNR without spatial averaging. METHODS: A fiber optic hydrophone was integrated into the cannula of a 20 gauge insertion needle. This transducer received transmissions from the ultrasound imaging probe, and the data were processed to obtain a tracking image of the needle tip. Excitation using Barker or Golay codes was performed to improve the SNR, and conventional bipolar excitation was performed for comparison. The performance of the coded excitation ultrasonic tracking system was evaluated in an in vivo ovine model with insertions to the brachial plexus and the uterine cavity. RESULTS: Coded excitation significantly increased the SNRs of the tracking images, as compared with bipolar excitation. During an insertion to the brachial plexus, the SNR was increased by factors of 3.5 for Barker coding and 7.1 for Golay coding. During insertions into the uterine cavity, these factors ranged from 2.9 to 4.2 for Barker coding and 5.4 to 8.5 for Golay coding. The maximum SNR was 670, which was obtained with Golay coding during needle withdrawal from the brachial plexus. Range sidelobe artifacts were observed in tracking images obtained with Barker coded excitation, and they were visually absent with Golay coded excitation. The spatial tracking accuracy was unaffected by coded excitation. CONCLUSIONS: Coded excitation is a viable method for improving the SNR in ultrasonic tracking without compromising spatial accuracy. This method provided SNR increases that are consistent with theoretical expectations, even in the presence of physiological motion. With the ultrasonic tracking system in this study, the SNR increases will have direct clinical implications in a broad range of interventional procedures by improving visibility of medical devices at large depths.


Assuntos
Tecnologia de Fibra Óptica , Processamento de Imagem Assistida por Computador/métodos , Agulhas , Ultrassonografia/métodos , Algoritmos , Animais , Artefatos , Plexo Braquial/diagnóstico por imagem , Desenho de Equipamento , Feminino , Gravidez , Carneiro Doméstico , Útero/diagnóstico por imagem
10.
J Ultrasound Med ; 35(6): 1333-9, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27162278

RESUMO

Ultrasound phantoms are invaluable as training tools for vascular access procedures. We developed ultrasound phantoms with wall-less vessels using 3-dimensional printed chambers. Agar was used as a soft tissue-mimicking material, and the wall-less vessels were created with rods that were retracted after the agar was set. The chambers had integrated luer connectors to allow for fluid injections with clinical syringes. Several variations on this design are presented, which include branched and stenotic vessels. The results show that 3-dimensional printing can be well suited to the construction of wall-less ultrasound phantoms, with designs that can be readily customized and shared electronically.


Assuntos
Cateterismo/métodos , Imagens de Fantasmas , Impressão Tridimensional , Ultrassonografia de Intervenção/métodos , Ágar , Desenho de Equipamento
11.
Med Image Comput Comput Assist Interv ; 9900: 353-361, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28111644

RESUMO

Ultrasound image guidance is widely used in minimally invasive procedures, including fetal surgery. In this context, maintaining visibility of medical devices is a significant challenge. Needles and catheters can readily deviate from the ultrasound imaging plane as they are inserted. When the medical device tips are not visible, they can damage critical structures, with potentially profound consequences including loss of pregnancy. In this study, we performed 3D ultrasonic tracking of a needle using a novel probe with a 1.5D array of transducer elements that was driven by a commercial ultrasound system. A fiber-optic hydrophone integrated into the needle received transmissions from the probe, and data from this sensor was processed to estimate the position of the hydrophone tip in the coordinate space of the probe. Golay coding was used to increase the signal-to-noise (SNR). The relative tracking accuracy was better than 0.4 mm in all dimensions, as evaluated using a water phantom. To obtain a preliminary indication of the clinical potential of 3D ultrasonic needle tracking, an intravascular needle insertion was performed in an in vivo pregnant sheep model. The SNR values ranged from 12 to 16 at depths of 20 to 31 mm and at an insertion angle of 49° relative to the probe surface normal. The results of this study demonstrate that 3D ultrasonic needle tracking with a fiber-optic hydrophone sensor and a 1.5D array is feasible in clinically realistic environments.


Assuntos
Algoritmos , Biópsia Guiada por Imagem/métodos , Ultrassonografia de Intervenção/métodos , Animais , Feminino , Feto , Agulhas , Imagens de Fantasmas , Gravidez , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Ovinos , Transdutores
12.
J Biomed Opt ; 20(11): 110503, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26580699

RESUMO

Accurate and efficient identification of nerves is an essential component of peripheral nerve blocks. While ultrasound (US) imaging is increasingly used as a guidance modality, it often provides insufficient contrast for identifying nerves from surrounding tissues such as tendons. Electrical nerve stimulators can be used in conjunction with US imaging for discriminating nerves from surrounding tissues, but they are insufficient to reliably prevent neural punctures, so that alternative methods are highly desirable. In this study, an interventional multispectral photoacoustic (PA) imaging system was used to directly compare the signal amplitudes and spectra acquired from nerves and tendons ex vivo, for the first time. The results indicate that the system can provide significantly higher image contrast for discriminating nerves and tendons than that provided by US imaging. As such, photoacoustic imaging could be valuable as an adjunct to US for guiding peripheral nerve blocks.


Assuntos
Aumento da Imagem/instrumentação , Nervos Periféricos/diagnóstico por imagem , Técnicas Fotoacústicas/instrumentação , Tendões/diagnóstico por imagem , Transdutores , Ultrassonografia de Intervenção/instrumentação , Animais , Desenho de Equipamento , Análise de Falha de Equipamento , Técnicas In Vitro , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Suínos
13.
Med Phys ; 42(10): 5983-91, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26429273

RESUMO

PURPOSE: Accurate and efficient guidance of needles to procedural targets is critically important during percutaneous interventional procedures. Ultrasound imaging is widely used for real-time image guidance in a variety of clinical contexts, but with this modality, uncertainties about the location of the needle tip within the image plane lead to significant complications. Whilst several methods have been proposed to improve the visibility of the needle, achieving accuracy and compatibility with current clinical practice is an ongoing challenge. In this paper, the authors present a method for directly visualizing the needle tip using an integrated fiber-optic ultrasound receiver in conjunction with the imaging probe used to acquire B-mode ultrasound images. METHODS: Needle visualization and ultrasound imaging were performed with a clinical ultrasound imaging system. A miniature fiber-optic ultrasound hydrophone was integrated into a 20 gauge injection needle tip to receive transmissions from individual transducer elements of the ultrasound imaging probe. The received signals were reconstructed to create an image of the needle tip. Ultrasound B-mode imaging was interleaved with needle tip imaging. A first set of measurements was acquired in water and tissue ex vivo with a wide range of insertion angles (15°-68°) to study the accuracy and sensitivity of the tracking method. A second set was acquired in an in vivo swine model, with needle insertions to the brachial plexus. A third set was acquired in an in vivo ovine model for fetal interventions, with insertions to different locations within the uterine cavity. Two linear ultrasound imaging probes were used: a 14-5 MHz probe for the first and second sets, and a 9-4 MHz probe for the third. RESULTS: During insertions in tissue ex vivo and in vivo, the imaged needle tip had submillimeter axial and lateral dimensions. The signal-to-noise (SNR) of the needle tip was found to depend on the insertion angle. With the needle tip in water, the SNR of the needle tip varied with insertion angle, attaining values of 284 at 27° and 501 at 68°. In swine tissue ex vivo, the SNR decreased from 80 at 15° to 16 at 61°. In swine tissue in vivo, the SNR varied with depth, from 200 at 17.5 mm to 48 at 26 mm, with a constant insertion angle of 40°. In ovine tissue in vivo, within the uterine cavity, the SNR varied from 46.4 at 25 mm depth to 18.4 at 32 mm depth, with insertion angles in the range of 26°-65°. CONCLUSIONS: A fiber-optic ultrasound receiver integrated into the needle cannula in combination with single-element transmissions from the imaging probe allows for direct visualization of the needle tip within the ultrasound imaging plane. Visualization of the needle tip was achieved at depths and insertion angles that are encountered during nerve blocks and fetal interventions. The method presented in this paper has strong potential to improve the safety and efficiency of ultrasound-guided needle insertions.


Assuntos
Tecnologia de Fibra Óptica/instrumentação , Agulhas , Ultrassonografia/instrumentação , Animais , Processamento de Imagem Assistida por Computador , Injeções , Suínos , Transdutores
14.
J Biomed Opt ; 20(8): 86005, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26263417

RESUMO

Precise device guidance is important for interventional procedures in many different clinical fields including fetal medicine, regional anesthesia, interventional pain management, and interventional oncology. While ultrasound is widely used in clinical practice for real-time guidance, the image contrast that it provides can be insufficient for visualizing tissue structures such as blood vessels, nerves, and tumors. This study was centered on the development of a photoacoustic imaging system for interventional procedures that delivered excitation light in the ranges of 750 to 900 nm and 1150 to 1300 nm, with an optical fiber positioned in a needle cannula. Coregistered B-mode ultrasound images were obtained. The system, which was based on a commercial ultrasound imaging scanner, has an axial resolution in the vicinity of 100 µm and a submillimeter, depth-dependent lateral resolution. Using a tissue phantom and 800 nm excitation light, a simulated blood vessel could be visualized at a maximum distance of 15 mm from the needle tip. Spectroscopic contrast for hemoglobin and lipids was observed with ex vivo tissue samples, with photoacoustic signal maxima consistent with the respective optical absorption spectra. The potential for further optimization of the system is discussed.


Assuntos
Técnicas de Imagem por Elasticidade/instrumentação , Procedimentos Cirúrgicos Minimamente Invasivos/instrumentação , Imagem Molecular/instrumentação , Técnicas Fotoacústicas/instrumentação , Análise Espectral/instrumentação , Cirurgia Assistida por Computador/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Imagens de Fantasmas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
15.
Reg Anesth Pain Med ; 39(5): 429-33, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25105983

RESUMO

BACKGROUND AND OBJECTIVES: This report describes a method for producing anatomically detailed, low-cost ultrasound phantoms of the spine with 3-dimensional printing. An implementation that involves representing a portion of the lumbar spine and the ligamentum flavum with 2 different printing materials and the surrounding soft tissues with agar gel is presented. METHODS: A computed tomography image volume of a patient with normal spinal anatomy was segmented to isolate the spine. Segments representing the ligamentum flavum and a supporting pedestal were digitally added, and the result was printed with a 3-dimensional printer. The printed spine was embedded in agar gel as a soft tissue component. Ultrasound images of the phantom were acquired and compared with those acquired from a human patient. RESULTS: The sonographic appearances of the phantom compared favorably with those observed from the human patient. The soft tissue component was suitable for needle insertions and could be remade replacing the agar. CONCLUSIONS: Ultrasound phantoms that are derived directly from patient anatomy have strong potential as learning tools for ultrasound-guided spinal insertions, and they could be used as preprocedural planning tools in cases involving pathologies, implants, or abnormal anatomies. Three-dimensional printing is a promising method for producing low-cost phantoms with designs that can be readily shared across clinical institutions.


Assuntos
Imagens de Fantasmas , Impressão Tridimensional , Coluna Vertebral/diagnóstico por imagem , Ultrassonografia de Intervenção/métodos , Osso e Ossos/diagnóstico por imagem , Humanos , Injeções Espinhais , Ligamentos/diagnóstico por imagem , Ligamento Amarelo/anatomia & histologia , Ligamento Amarelo/diagnóstico por imagem , Modelos Anatômicos , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...